
Week 9 - Wednesday

 What did we talk about last time?
 Refactoring
 TDD
 System testing
 Alpha testing
 Beta testing

 The product has been designed, constructed, and tested…now
what?

 Users will actually use the product in the production
environment, the hardware and software systems where the
product lives

 Making the product available in the production environment is
called deployment

 Help that the developer (or their associates) provide to the user is
called support

 Changes to the software after deployment are called
maintenance

 Physical architecture is how the program lives in a file system and
executes on processors
 As opposed to logical architecture, what we considered before

 Physical architecture can be structured by where it's installed, where it's
executed, and where the data it uses is stored

 The following four categorizations are common:
 Personal: Software is installed and executed on a user device, where the data is
 Shared: Software is installed on a shared device and temporarily loaded on the

user device where it is executed on user data
 Mainframe: Software is installed and executed on a shared device accessible

from a user device (terminal) using data stored on the shared device
 Cloud: Software is installed on a shared device and temporarily loaded on the

user device where it is executed using data stored on the shared device

 Like logical architecture, physical architectures
can be modeled using UML

 UML deployment diagrams contain artifacts and
nodes
 Artifacts are physical components like files

▪ Represented as rectangles with the stereotype «artifact»
or an icon

 Nodes are physical devices or execution
environments like an operating system
▪ Represented as boxes with the stereotype «device»,

«execution environment», or some other description
 Communication between nodes is shown with a

solid line
 The deployment relationship is show by putting

the artifact in the node box, listing the artifacts in
the node box, or using a dashed arrow with the
stereotype «deploy»

 Deployment has the following steps
 Release: Assembling the artifacts into a distributable package (like a

zip file or an installer tool)
 Install: Bringing the distributable package to the production

environment and putting the artifacts in the right nodes
 Activate: Start the executable artifacts

 Ideally, the installation and activation appear to be atomic
 They happen as if they are a single activity
 They can be rolled back to the state before the installation

 Distribution has changed over time
 Once upon a time, someone with significant technical skill was

needed to install software by hand
 Later, executable installers could be bought on disk or

downloaded from the Internet
 Stores are now a common way to automatically install and update

software
 Examples: Apple Store, Windows Store, Steam

 Package managers are used for open source software
 Examples: apt, rpm, dpkg, yum

 Containers like Docker are also used to provide software in a
customized execution environment, ready to use

 Maintenance is a change to software after it's been deployed
 Corrective maintenance: Changes that fix faults after they have given rise

to failures
 Preventative maintenance: Changes that correct faults before they give

rise to failures (or to improve other characteristics like portability)
 Adaptive maintenance: Changes that keep the product usable in a

changing environment
 Perfective maintenance: Changes that satisfy additional functional or

non-functional requirements
 Since products are constantly changing in agile, it's not always

clear what's maintenance and what's just another cycle of
development

 Maintenance is expensive
 Some studies suggest that maintenance is responsible for 80% of the total effort

surrounding a software product
 This is exactly why Microsoft pushes OS versions off the supported list as soon as it can

 Maintenance is expensive for many reasons:
 It goes on for a long time, maybe decades
 Software is poorly written to begin with, and maintaining only gets harder if new

features are added
 Software structure deteriorates over time as changes are made
 In traditional processes, maintenance can take a long time and still end up with a bad

result
 Agile processes overcome some of these issues by making maintenance a

natural continuation of development

 Support are the activities between the user and a developer (or representatives
of the developer) to help the user's experience

 Support is often put into two categories
 Professional support: The person providing support is employed by or paid by the

developer
 Community support: The person providing support is another user or expert not

employed by the developer
 Even professional support is usually not provided by the developers themselves
 Support teams usually have lower skills and are paid less
 Developers might not have the *ahem* interpersonal skills to deal with frustrated users
 Support teams often have better knowledge of the application domain (the thing the

product is being used for)

 Support can come through synchronous communication channels
like phone or chat

 Or through asynchronous channels like e-mail or forums
 Asynchronous channels are usually cheaper but lower quality
 Like with bugs, support teams can use issue tracking systems to

track and prioritize support issues
 Support can be free or based on a fee
 Sometimes different levels of support are provided depending on the fee

 Like maintenance, support can be a large part of the cost of a
product and is sometimes neglected

 The exam will have:
 Short answer questions
 At least one diagram
 Probably a JUnit test case or two to write
 Probably some matching
 One or two essay questions

 Look at the point values to determine where to invest your
time

 Functional suitability
 How much the product satisfies user

needs
 Performance efficiency
 Processing time and resources used

 Compatibility
 How well the product can co-exist and

interoperate with other products
 Usability
 How easy the product is to learn and use

 Reliability
 The extent to which the product does

certain functions under given conditions
and recovers from interruptions

 Security
 Confidentiality, integrity, authenticity,

non-repudiation, and accountability
 Maintainability
 How easy it is to modify, adapt, and reuse

the product
 Portability
 How easy it is to make the product work in

a different computing environment

 Quality assurance (QA) is a system for making sure the product
satisfies stakeholder needs

 QA focuses on two distinct goals:
 Validation
 Testing if the product satisfies stakeholder needs
 "Are we building the right product?"
 Example: Does the customer want steak and fries?

 Verification
 Testing if the product satisfies needs properly
 "Are we building the product right?"
 Example: Are the steak and fries cooked well?

 There is no one way to prevent defects
 Instead, preventing defects must be built into the software

development processes that the entire organization uses
 Process improvement is making a process better
 Training and education are necessary

 Process guides such as documentation standards and style
guides help

 Using well-studied design methodologies (such as OOP) can
help

 Reusing design architectures that have been successful in the
past can prevent defects
 Examples: MVC and pipe-and-filter

 Design patterns are standard patterns for OOP classes
 Examples: decorator and factory

 Using well-studied algorithms and data structures helps a
great deal

 Reusing code (often from libraries) is smart, especially since
those libraries have been tested thoroughly

 Formal methods include systems for mathematically
checking that code does what it's supposed to
 Not all code can be modeled mathematically
 Yet some of these systems have found bugs in real software, such as

TimSort, the most commonly used sort in Python and Java
 Prototypes let us explore what defects might happen before

putting them in the final product
 The opposite end of the spectrum from formal methods, since

prototypes are practical rather than theoretical

 Many tools help reduce defects
 Version control tools help track code over time
 Configuration management tools allow changes in one tool to

automatically update other tools
 Examples: Puppet and Ansible

 Integrated development environments (IDEs), once called
computer aided software engineering (CASE) tools, can integrate
many useful tools for defect prevention
 Syntax highlighting
 Two-way translation between code and UML models
 Style checking

 A good process can't keep out all defects
 Some defects will show up and must be found and removed
 Defect detection and removal techniques fall into two

categories:
 Review and correct
 Test and debug

 Review and correct methods look at the code while test and
debug methods look at the product in operation

 There's a formal name for just looking at your code for errors: a
desk check

 A walkthrough is when you explain your code to someone else
 An inspection is a more formal process with trained inspectors
 Inspection roles:
 Moderator schedules and runs the meeting and distributes the code
 Author of the code
 Reader who guides the meeting
 Recorder who takes notes
 Inspectors who check code before and during the meeting

 Testing software helps find cases that are not obvious from
looking at the code

 Software testing has some jargon:
 A failure is a deviation between actual behavior and intended

behavior
 A fault is a defect that can give rise to a failure
 A trigger is a condition that causes a fault to result in a failure
 A test case is a set of inputs and program states
 A collection of test cases is a test suite

 Debugging is using trigger conditions to find and fix faults

System Testing

 Unit tests test a small piece of code (method
or class) in isolation from other code
 Often done by the author

 Integration tests test several small pieces of
code together
 By the author, a testing team, or both

 Alpha and beta tests test the whole product
 Alpha tests usually have a testing team
 Beta tests include users

Unit
Testing

Integration
Testing

Alpha
Testing

Beta
Testing

Defect
Elimination

Defect
Prevention

Process Guides

Analysis and Design Methods

Reference Architectures

Design Patterns

Data Structures and Algorithms

Software Reuse

Prototyping

Version Control

Configuration Management

IDE Tools

Training and Education

Defect
Detection
and Removal

Review and Correct Style and Standards Checkers

Spelling and Grammar Checkers

Reviews
• Desk Checks
• Walkthroughs
• Inspections

Test and Debug Regression Testing

Unit Testing

Integration Testing

System Testing
• Alpha Testing
• Beta Testing

 Interaction design is planning out the user experience (UX) for a
software product

 It cares about how the product looks and sounds (and, one day, smells?)
and how the user gets output and puts input into it

 This field used to get little attention from computer scientists, but it's
really important
 Apple is a great posterchild for showing off the value of UX
 Even Microsoft, maligned for its user interfaces, has invested lots of money

studying how to make windows and icons easier to use
 UX is part of the field of human computer interaction (HCI), which

combines ergonomics, physiology, psychology, and graphic design with
computer science

 The quality of a user interface is called its usability

 Effectiveness: User can access all the features they need
 Efficiency: Users can achieve their goals quickly
 Safety: Users and computers aren't harmed
 Learnability: Users become proficient quickly
 Memorability: Users regain proficiency quickly after time

away from the product
 Enjoyability: Users experience positive emotions when using

the product
 Beauty: Users find the product aesthetically pleasing

 Before coding the UX, models are incredibly helpful to plan
out how it looks and behaves

 Static interaction design models show the audio and visual
parts of the product that don't change during execution

 Dynamic interaction design models show behavior during
execution

 Both are useful

 A use case is an interaction
between a product and its
environment

 An actor is an agent that
interacts with a product

 Use case diagrams (which
we've seen before) are static
interaction design models
that represent the actors that
interact with use cases

 Screen layout diagrams
and page layout
diagrams are drawings of
a product's visual display

 A wireframe is a low-
fidelity version that gives a
rough layout without a lot
of detail

 It's good to start with a
wireframe and refine it
with more detail later

 A use case diagram
shows which actors
interact with use cases

 However, it doesn't
explain what they do

 A use case description is
formatted text that
explains the actions that
an actor makes

 The use case description
is a dynamic interaction
design model

 Example template:

Use Case Name To identify the use case

Actors The agents participating in the use case

Stakeholders and
Needs

What this use case does to meet stakeholder
needs

Preconditions What must be true before this use case begins

Post conditions What will be true when this use case ends

Trigger The event that causes this use case to begin

Basic Flow
The steps in a typical successful instance of this
use case

Extensions
The steps in alternative instances of this use case
due to variations in normal flow or errors

 Design principles favor certain characteristics to make a design better
 SAC principles are three general interaction design principles
 Simplicity
 Simple designs are better
 Lots of options are confusing for the user
 It's better to make commonly used options easy and require a little more work for

unusual options
 Accessibility
 Designs that can be used be more people are better
 Considerations: color blindness, things too small to see or interact with

 Consistency
 Designs that present data in similar ways are better
 Example: use consistent navigation controls

 CAP principles are focused on appearance
 Contrast
 Designs that make different things obviously different are better
 Example: italics and bold
 Example: font size to distinguish headings from text

 Alignment
 Designs that line up on a grid are better
 Indentation is useful

 Proximity
 Designs that group related things together are better

 FeVER principles are about behavior
 Feedback
 Designs that acknowledge user actions are better
 Otherwise, how do you know if what you're doing has an effect?

 Visibility
 Designs that display their state and available operations are better
 Are we in Arm Bomb or Disarm Bomb mode?

 Error Prevention and Recovery
 Designs that prevent user errors and allow error recovery are better
 Prevention example: disable buttons that shouldn't be pressed
 Recovery example: allow undo or ask "Are you sure?" before doing something

dangerous

 A number of approaches can be used to avoid design defects
 Design principles: Using a list of good principles helps you

make good choices
 Design notations: Using good notations (often UML

diagrams) helps designs be complete and consistent
 Design processes: Using established processes for designs

helps avoid mistakes
 Design patterns: Using patterns, models designed to be

imitated, reuses solutions that have worked in the past (and
make design easier)

 As with interface design, simpler designs are better
 What is simplicity?
 Fewer lines of code
 Fewer control structures
 Fewer connections between different parts
 Fewer computations with different kinds of objects

 A good rule of thumb is which design is easiest to understand
 Simplicity is a good goal, but some important algorithms in computer

science are necessarily complex

Everything should be made as simple as possible, but not simpler.
-Attributed to Albert Einstein, who probably did not say it quite like that

 Designs with small modules are better
 Smaller modules are easier to read, to write, to understand,

and to test
 Miscellaneous guidelines:
 Classes should have no more than a dozen operations (methods)
 Classes should be no more than 500 lines long
 Operations should be no more than 50 lines long
 I have heard that you should be able to cover a method with your

hand
 Of course, it is often impossible to follow these guidelines

 Each module should shield the internal details of its operation from other
modules

 Declare variables with the smallest scope possible
 Use private (and protected) keywords in OOP languages to hide

data (and even methods) from outside classes
 Advantages of information hiding:
 Modules that hide their internals can change them without affecting other thins
 Modules that hide information are easier to understand, test, and reuse because

they stand on their own
 Modules that hide information are more secure and less likely to be affected by

outside errors
 This is why we use mutators and accessors instead of making members

public

 Module coupling is the amount of connectivity between two modules
 Modules can be coupled in the following ways:
 One class is an ancestor of another class
 One class has a member whose type is another class
 One class has an operation (method) parameter whose type is another class
 One operation calls an operation on another class

 If there two modules have many of these couplings, we say that they are
strongly coupled or tightly coupled

 When modules are strongly coupled, it's hard to use them independently
and hard to change one without causing problems in the other

 Try to write classes to be as general as possible instead of tied to a specific
problem or set of classes

 Using interfaces helps

 Module cohesion is how much the stuff in the module is
related to the other stuff in the module

 We want everything in a class to be closely related
 It's best if a class keeps the smallest amount of information

possible about other classes
 More module cohesion usually leads to looser module

coupling
 Sometimes a module being hard to name suggests that its

data or operations are not cohesive

 The design process is a microcosm of
the larger software development
process

 The steps are analyzing the problem,
proposing solutions (and looking up
existing solutions to similar problems),
and evaluating the solutions (perhaps
combining different solutions) until a
design is selected

Analyze Design
Problem

Design
Problem

Generate and
Improve Candidate

Designs

Evaluate Candidate
Designs

Select Design

Design
Specification

Adequate

Inadequate

Finalize Design

 Architectural design is specifying a
program's major components

 Architectural design is often modeled
with a box-and-line diagram (also
called a block diagram)
 Components are boxes
 Relationships or interactions between

them are lines
 Unlike UML diagrams, box-and-line

diagrams have no standards
 Draw them in a way that communicates

your design

 The Model-View-Controller (MVC)
style fits many kinds of web or GUI
interactions

 The model contains the data that is
being represented, often in a database

 The view is how the data is displayed
 The controller is code that updates the

model and selects which view to use
 The Java Swing GUI system is built

around MVC
 Good: greater independence between

data and how it's represented
 Bad: additional complexity for simple

models

 Organize the system into layers
 Each layer provides services to layers

above it, with the lowest layer being the
most fundamental operations

 Layered styles work well when adding
functionality on top of existing systems

 Good: entire layers can be replaced as
long as the interfaces are the same

 Bad: it's hard to cleanly separate layers,
and performance sometimes suffers

 If many components share a lot of data, a repository style might be appropriate
 Components interact by updating the repository
 This pattern is ideal when there is a lot of data stored for a long time
 Good: components can be independent
 Bad: the repository is a single point of failure

 Client-Server styles are used for distributed systems
 Each server provides a separate service, and clients access those services
 Good: work is distributed, and clients can access just what they need
 Bad: each service is a single point of failure, and performance might be

unpredictable

 In the pipe and filter style, data is passed from one component to the next
 Each component transforms input into output
 Good: easy to understand, matches business applications, and allows for

component reuse
 Bad: each component has to agree on formatting with its inputs and

outputs

 Project scheduling is organizing the work
 Into separate tasks
 When the tasks will be done
 Who will do them

 Both waterfall and agile approaches benefit from scheduling
 For waterfall, all tasks in the project are scheduled
 For agile, there might be an overall schedule for when major phases of the

project will be completed
 Tasks should last at least a week but not more than two months
 A task taking more than two months should be broken into subtasks

 It's helpful to have visualizations of these tasks

 This table shows
all the task
information, but
it's hard to
visualize

 M is used to
label milestones

Task Effort (person-days) Duration (days) Dependencies

T1 15 10

T2 8 15

T3 20 15 T1 (M1)

T4 5 10

T5 5 10 T2, T4 (M3)

T6 10 5 T1, T2 (M4)

T7 25 20 T1 (M1)

T8 75 25 T4 (M2)

T9 10 15 T3, T6 (M5)

T10 20 15 T7, T8 (M6)

T11 10 10 T9 (M7)

T12 20 10 T10, T11 (M8)

 Gantt charts show the same
information, but in a much
clearer way
 Bars shows the length of each task
 Dependencies are shown by the

starting point of each task
 Recall that you made a Gantt

chart for Project 2
 For it, you needed to break down

your product into tasks and
figure out which tasks are
dependent on which

 Class diagrams are made up of class symbols (rectangles)
 These class symbols contain one or more compartments
 The top compartment has the class name
 A second, optional compartment often contains attributes

(called member variables in Java classes)
 Often followed by a colon with the type

 A third, optional compartment often contains operations
(called methods in Java classes)
 Sometimes followed by parameter and return types

 Visibility modifiers can be marked:
 + for public
 # for protected
 ~ for package
 - for private

 Only important attributes and operations need to be
specified
 Classes might contain others that aren't shown

 Inheritance is shown with the generalization connector
 A solid line from the child class to a solid triangle connected to the parent class
 Confusingly, this means that children classes point at their parent classes

 Interfaces look like classes but are marked with «interface» above the class name
 This kind of marking is called a stereotype
 Stereotypes show extra information that wasn't part of the original UML class diagram specification

 Classes that implement interfaces have dashed lines leading to a solid triangle connected to
the interface

 Associations are show with lines between classes
 Associations can be labeled to explain them
 The lines can be marked with the multiplicity, showing

how many of each class can be associated with the other
 The multiplicity can be comma separated lists or ranges,

and * means zero or more
 When a class is part of another class, the part is

connected by a line and a diamond (the
aggregation connection) to the whole

From visual-paradigm.com

 Software design patterns are ways of designing objects that
have been used successfully in the past
 Think of them as rough blueprints or guidelines

 Design patterns have four essential elements:
 A meaningful name
 A description of the problem area that explains when the pattern may be

applied
 A solution description of the parts of the design, their relationships, and

their responsibilities
 A statement of the consequences of using the design pattern

 Patterns are more abstract than code

 The composite pattern is useful for
part-whole hierarchies of objects

 A group of objects somewhere in the
hierarchy can be treated like a single
object

 The Swing library uses the composite
pattern for its graphical components

 Problems the composite pattern
solves:
 Representing a part-whole hierarchy so

that clients can treat parts and wholes the
same

 Representing a part-whole hierarchy as a
tree

 The command pattern is
useful for encapsulating an
action in an object

 The action is independent from
the objects that used it and can
be stored for later

 The Swing library uses the
command pattern for events

 Problems the command
pattern solves:
 Decoupling the requester from a

request

 The decorator pattern provides a way
to add responsibilities to an object
dynamically at run-time

 It is commonly used to customize the
appearance of GUI elements

 The Swing library uses the decorator
pattern to customize borders

 Problems the decorator pattern
solves:
 Adding responsibilities to an object

dynamically at run-time
 Providing a flexible alternative to

inheritance for extending functionality

 The observer pattern is useful for a one-to-many dependency where one object changing can
update many other objects

 An observer pattern defines Subject and Observer objects
 When a subject changes state, registered observers are updated automatically
 Problems the observer pattern solves:
 Making a one-to-many dependency between objects without tightly coupling the objects
 Updating an arbitrarily large number of other objects automatically when one object changes state

 The factory method design
pattern allows a method to
be overridden so that a child
class can determine what kind
of object to create

 A factory method is defined
that is used to create objects

 Problems the factory method
pattern solves:
 Allowing subclasses to define

which class to instantiate

 The abstract factory
pattern is similar except
that it uses some object as
a factory instead of
overriding a method

 Problems the abstract
factory pattern solves:
 Making a class be

independent of the objects it
requires

 Making a family of related
objects

 Sometimes it's useful to have only a
single instance of a class

 The singleton pattern makes it so that
it's possible to make only one object of a
class and makes it easy to access

 Problems the singleton pattern solves:
 Ensuring that there's only one instance of a

class
 Making the instance of a class easy to get

 The strategy pattern allows an
algorithm to be selected at run-
time

 In Java, that algorithm is usually
encapsulated in the method of an
object

 Problems the strategy pattern
solves:
 Configuring a class with an algorithm

at run-time
 Selecting or exchanging an algorithm

at run-time

 Sometimes you have an object that
doesn't generate the right kind of
output

 The adapter pattern allows you to
turn the output from something that
gives one kind of output into the kind
you need

 Problems the adapter pattern solves:
 Reusing a class that doesn't have an

interface the client requires
 Allowing classes with incompatible

interfaces to work together

 It's not always necessary to build a system from scratch
 A bought and customized system is one with several bought subsystems

that have been customized and integrated into a product that satisfies
requirements

 These systems come in a number of overlapping categories:
 Commercial off-the-shelf (COTS) systems are generic products (like SAP,

SalesForce, or Blackboard) that need significant customization for a particular
client

 Component-based systems are constructed from individual objects that use
standard interfaces, like Java Beans and .NET

 Service-oriented systems are like component-based systems except that the
connection between components is over the network, and the services are
provided by servers

 Pros:
 Widely used components are usually reliable
 Good documentation and standards exist for using such components
 Constructing these systems is usually faster, and costs are easier to

predict
 Cons:
 Increased dependency on outside organizations and their support
 Lowered flexibility
 Software engineers have less creative control, potentially reducing

job satisfaction (boohoo)

 Idioms in programming languages are common ways to express ideas
 Example Java idioms:
 Use for loops when you want to repeat a specific number of times
 Use while loops when you don't know how much you're going to repeat
 Use a three-line swap to exchange values

 It's a good idea to read code in a language you don't know well to figure
out the idioms that people use

 Some people use idioms from languages they know better that can be
either inefficient or confusing if they're not used in a different language

 Syntactic sugar is a kind of formalized idiom
 An easy-to-use grammatical structure is converted to a harder-to-read one

behind the scenes
 Example: enhanced for loops in Java

 Each language has stylistic considerations for how to write
readable code
 Many workplaces and open source projects publish style guidelines

 Naming conventions cover how to name variables, methods,
classes, files, packages, etc.
 Spelling matters
 Capitalization is often a matter of convention
 Being consistent makes everything clearer

 Most languages encourage either snake case or camel case
 Snake case breaks up words with underscores: nuclear_silo_radius
 Camel case breaks up words with capitalization: nuclearSiloRadius
 Snake case is common in C and Python
 Camel case is common in Java and C#
 Very few programming languages allow spaces in variable names

 I prefer variables to be explicit so that it's clear what we're talking about even if we start
reading in the middle of unfamiliar code
 Java tends toward the explicit rather than the abbreviated

 A few other Java naming conventions:
 Packages are all lowercase
 Local variables, member variables, and methods start with lowercase letters
 Classes, enums, and interfaces start with uppercase letters
 Constants are written in snake case with ALL CAPS

 Most languages do not have meaningful limitations on variable name length now, but they
used to

 Older C code in particular often leaves out vowels to save space
 Hungarian notations are naming conventions that describe the types of variables with

prefixes:
 wParam (word-sized parameter)
 pfData (pointer to a floating-point value of data)
 lpszName (long pointer to a zero-terminated string)

 Hungarian notations can also be used to specify scopes:
 g_nGoats (global integer for number of goats)
 m_nBoats (member variable integer for number of boats)

 These conventions have largely been given up, since IDEs provide tools for keeping track
of types and scopes
 Also, languages likes Java and C# have much stronger type-safety than C and C++, giving

compiler errors for misusing types

 Many languages (with the notable exception
of Python) ignore whitespace

 Thus, we have a choice about how to layout
our code

 In C-family, curly brace languages, it's
common to put the opening brace of an if
statement, method, or loop either on the
same line as the header (K&R style) or on the
next line (Allman style)
 K&R is more common for Java, but Allman is

more common for C#
 Some people also have strong feelings that

indentation should be tabs while others
prefer spaces

 A common convention is that lines of code
should not exceed 80 characters

if (raining) {
System.out.println("I'm wet!");

}

if (raining)
{

System.out.println("I'm wet!");
}

K&R style

Allman style

 Almost every language allows for comments
 Code that is so easy to understand that it needs no comments

is called self-documenting code
 Ideally, all code is self-documenting, but this goal is rarely reached

 Perhaps the other end of the spectrum is literate
programming, which explains everything in English mixed in
with the code, taking the perspective that code is for humans
to understand and only incidentally for computers to execute

 Commenting should explain confusing code, especially
unusual algorithms

 Do use comments to describe the intent of a complicated piece of
code

 Do use comments to explain the rationale behind a decision so
that people can understand in the future
 Why this way?
 Why not that other way?

 Do use comments to reference relevant outside documents
 Explanation of an algorithm
 API documentation page
 Design document with UML diagrams

 Don't use comments to repeat
the code

 Be careful about using
comments for to-do items and
future work
 Especially if it means you don't do

the right thing now
 It is possible to over-comment,

so consider whether the
supplemental information is
useful

// Increase i by 1
++i;

// Include sales[i] in the total
total = total + sales[i];

Bad comments that repeat the code

 Programs often include data, but how should it be organized?
 Data structures store the data in the program, but the data

also needs to be stored between program runs or sent to
someone else to use
 Internal data vs. external data

 Common data organization approaches
 Markup languages
 Databases

 We already know the value of a version control system (VCS)
 Some details:
 A VCS stores items (usually files)
 A version is the set of items after one or more modifications
 A revision is a version stored in a VCS
 A baseline is the first revision
 Storage for revisions is called a repository
 Storing a version in the repository is called checking in or committing
 Retrieving a version from the repository is called checking out or

updating
 A checked-out version of an item is a working copy

 How do we deal with two or more different people working on the
same file and trying to commit them to the same repository?
 File locking: When a files are checked out for modification, they are

locked, meaning that no one else can check them out for modification
 Concurrent modification and merge: If someone tries to commit a file

based on an older version of the file, the commit fails, forcing the person
to merge the newer repository file with the file they're working on

 Before you start modifying a file, it's wise to pull down the latest
changes first

 A centralized VCS has one central repository
 A distributed VCS has many repositories that are peers

 Static analysis is looking at code without running it
 Code reviews
 Syntax checking
 Style checking
 Usage checking
 Model checking
 Data flow analysis
 Symbolic evaluation

 Dynamic analysis is running code to test it
 Unit testing
 Debugging
 Performance optimization and tuning

 Both static and dynamic analysis are valuable and have different strengths
 Static analysis doesn't require a fully working program
 Dynamic analysis can give real data about things like performance

 Desk checking is one form of code review
 Looking over the code
 Executing it by hand (actually computing values)

 Formal inspections (discussed earlier) are another
 Formal review guidelines
 Don't read more than 200 lines of code per hour when preparing alone
 Don't cover more than 150 lines of code when doing a team inspection
 Use a checklist

 Examples from a Java inspection checklist
 All variables and constants are named in accord with naming conventions
 There are no variables or attributes with confusingly similar names
 Every variable and attribute has the correct data type
 Every method returns the correct value at every return point
 All methods and attributes have appropriate access modifiers (private, protected, or public)
 No nested if statements should be converted into a switch statement
 All exceptions are handled appropriately

 Syntax checking is now mostly done by editors and IDEs
 Be careful about the errors and warnings IDEs and compilers

given
 As computers, they can only guess about why the syntax is wrong

 Language-specific style guides are required on most projects
 Automated style checkers also exist
 In addition to formatting, they can check semantic issues like

variables that are declared and not used
 Some features like this are included in modern compilers as warnings

 For broader semantic issues, usage and idiom checkers (which
can be combined with a style checker) look for:
 Suspicious or error-prone constructs
 Non-portable constructs
 Memory allocation inconsistencies
 Language-specific issues
▪ Loops that never execute
▪ Loops that never terminate
▪ Using types together that are legal but unusual

 Formal methods use mathematical models to do static analysis
 Model checking uses analysis to determine if a program meets

requirements, usually if certain preconditions are met, it's
guaranteed that certain postconditions will be met

 Data flow analysis represents a program as a graph and uses that
knowledge to calculate the possible values at various points in the
graph
 Modern languages like Java use data flow analysis to complain, for

example, that a variable might not have been initialized
 Symbolic evaluation traces through the execution of a program

with symbolic values instead of concrete values

 Testing is an important form of dynamic analysis
 Unit testing is testing individual units or sub-programs (classes or

methods in Java) in isolation
 A test case has one value for every input and an expected value

for every output
 A false negative happens when there's a problem with your code

but you don't write a test that catches it
 This almost always happens, since it's very hard to test everything

 A false positive happens when your code is fine but your test is
bad
 For example, you did the math wrong when coming up with your expected

answer

 Picking good test cases is an art form
 Black box testing is a strategy that assumes no knowledge of

what happens inside the system
 Only what the input and matching output should be are known
 Black box testing is easily done by someone who had nothing to do with

developing the code
 Black box testing isn't affected by assumptions about how an algorithm

should work
 Clear box (or white box or open box) testing uses knowledge of

the system to generate good tests
 Both kinds of testing are needed to be thorough

 Clear box testing is built around the idea of coverage, which is
how much of the unit is tested

 Coverage can be explore with a control-flow graph (CFG) that
shows the possible paths execution could take in a program
 An action node in a CFG is straight-line code with one entry point

and one exit point
 A decision node in a CFG is code like an if statement or a loop with

multiple exit points
 Arrows show the flow of execution through nodes

int calculate(int x, int y)
{

int a, b;
a = 1; // S1
if (x > y) // S2
{

a = 2; // S3
}
x++; // S4
b = y * a; // S5
if (y <= 0) // S6
{

b++; // S7
}
return b; // S8

}

S1

S2

S3

S4

S5

S6

S7

S8

calculate(int x, int y)

[else] [x > y]

[else] [y <= 0]

 We say a statement is exercised by a test or a suite of tests if it gets executed
 Statement coverage is the percentage of statements exercised by a set of

tests
 Example: (x = 1, y = 2) exercises everything except S3 and S7 in the previous CFG,

giving a statement coverage of 75%
 Branch coverage is the percentage of branch directions taken by a set of tests
 Example: (x = 1, y = 2) covers the else edge from S2 and the else edge from S6,

giving a branch coverage of 50%
 Path coverage is the percentage of all execution paths that have been taken
 Example: (x = 1, y = 2) takes only one of the four paths from S1 to S8, giving a path

coverage of 25%
 More coverage is better
 It will usually take many tests to get good coverage

 Boundary value analysis uses values near the edges of legal limits
 If input must be within a range, create tests just below, at, and just above the endpoints

of the range
 If output must be in a certain range, try to pick inputs that generate values around the

minimum and maximum of that range
 Example: Boundary values for a method that's supposed to accept passwords if

they're between 6 and 12 characters inclusive
Input Length Case Valid

"goats" 5 Mininum – 1 False

"wombat" 6 Minimum True

"wombats" 7 Minimum + 1 True

"abracadabra" 11 Maximum – 1 True

"hippopotamus" 12 Maximum True

"administrator" 13 Maximum + 1 False

 A number of other heuristics are commonly used because they often find errors
 For single input parameters
 0 (because people forget about 0 or because of division by 0)
 Very large and very small numbers (because of underflow and overflow)
 Character or string versions of numbers (which makes sense in a language like Python or

JavaScript but not in Java where type checkers would prevent such thins)
 For multiple input parameters
 Equal values for the parameters
 Different relative values (x larger than y, then x smaller than y)

 For arrays and collections
 Very small and very large arrays and collections
 Arrays or collections of length 0 and 1
 Arrays or collections that are unsorted, ascending, and descending
 Arrays or collections with duplicated values and with no duplicated values

 Something's wrong with your program, so you change your code, what
happens?

 Data suggests that
 30% of software changes result in one of the three bad outcomes
 On average, bad outcomes occur about 10% of the time
 Faults introduced during bug fixes are harder to find and remove than others

 One safeguard is regression testing, running all tests after any software
change
 Any time you find a bug, add the test you used to find the bug into your test suite

No New Fault Introduced New Fault Introduced

Fault Corrected Good Bad

Fault Not Corrected Bad Very Bad

 Nowadays, running large test suites can be automated
 Tools such as JUnit and other testing tools allow us to:
 Write clearly marked tests with special set-up and clean-up code if

needed
 Run the tests, sometimes with randomized values or in randomized

orders
 Record which tests pass and fail
 Show coverage information to see which lines of code the tests

covered

 JUnit is a popular framework for automating the unit testing
of Java code

 JUnit is built into Eclipse and many other IDEs
 It is possible to run JUnit from the command line after

downloading appropriate libraries
 JUnit is one of many xUnit frameworks designed to automate

unit testing for many languages
 You are required to make JUnit tests for Project 3
 JUnit 5 is the latest version of JUnit, and there are small

differences from previous versions

 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}

 An assertion is something that must be true in a program
 Java (4 and higher) has assertions built in
 You can put the following in code somewhere:

 If the condition before the colon is true, everything is fine
 If the condition is false, an AssertionError will be thrown with the

message after the colon
 Caveat: The JVM normally runs with assertions turned off, for

performance reasons
 You have to run it with assertions on for assertion errors to happen
 You should run the JVM with assertions on for testing purposes

String word = "phlegmatic";
assert word.length() < 5 : "Word is too long!";

 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)

 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}

 What if a method is supposed to throw an exception under certain conditions?
 It should be considered a failure not to throw an exception
 The Assertions class also has a fail() method that should never be called
import org.junit.jupiter.api.*;

public class FailTest {
@Test
public void testBadString() {

String string = "armpit";
try {

int number = Integer.parseInt(string);
Assertions.fail("An exception should have been thrown!");

}
catch(NumberFormatException e) {}

}
}

 Debugging is using trigger conditions to identify and correct faults
 Steps of debugging

1. Stabilize: Understand the symptom and trigger condition so that the failure
can be reproduced

2. Localize: Locate the fault
▪ Examine sections of code that are likely to be influenced by the trigger
▪ Hypothesize what the fault is
▪ Instrument sections of code (with print statements or conditional breaks)
▪ Execute the code, monitoring the instrumentation
▪ Prove or disprove the hypothesis

3. Correct: Fix the fault
4. Verify: Test the fix and run regression tests
5. Globalize: Look for similar defects in the rest of the system and fix them

 Debug code is temporary output and input used to monitor what's going
on in the code

 Instead of printing out just numbers, add context information so that the
debug statements are clear

 Debug code is quick and dirty, useful when setting break points and
tracing execution with a debugger might be too much work to catch a
small issue

 There are logging tools that can print logging data at various levels
 Normally, nothing prints out
 Running the program in logging mode prints out important data
 Running the program in verbose mode prints out everything it can

 Debug output can go to stdout or stderr
 System.err (instead of System.out) prints to stderr in Java

 IntelliJ, Eclipse, Visual Studio, gdb and most fully-featured IDEs
provide debugging tools

 Typical debugging features:
 Setting breakpoints that will pause execution of the program when

reached
▪ Breakpoints can often be conditional, pausing only if certain conditions are met

 Executing lines of code one by one, stepping over method calls or
stepping into them and stepping out when you're done executing its
code

 Setting watches that display the current state of variables and members
 If you don't use your debugger, you're choosing to play the game

with one hand tied behind your back

 Refactoring means changing working code into working code
 It can be done to improve the structure, the presentation, or the performance
 You should refactor when:
 There's duplication in your code
 Your code is unclear
 Your code smells:

▪ Comments duplicate code
▪ Classes only hold data (instead of operating on it)
▪ Information isn't hidden
▪ Classes are tightly coupled
▪ Classes have low cohesion
▪ Classes are too large
▪ Classes are too small
▪ Methods are too long
▪ switch statements are used instead of good object-orientation

 Renaming a variable or method
 Adding an explanatory variable
 If an expression is too long, storing a partial computation into a named variable

can help it be understood
 Inline temporary variable
 If a temporary variable is useless, just use the full expression (the opposite of the

previous)
 Break a method into two methods
 Combine two short methods into a single one
 Replace a conditional with polymorphism
 Instead of an if or a switch, behavior changes because different objects have

overridden methods with different behavior
 Move methods from child classes to parent classes

 Test driven development (TDD) is a style of development
where testing is an integral part of coding

 The key idea of TDD is that you write tests for the code before
you write the code
 Thus, the tests aren't distorted by writing the code

 TDD is used for Extreme Programming, but it can be used for
any approach, agile or plan-driven

 You have to have a testing framework
 Tests are written before code
 Tests and code are written

incrementally
 Write tests for some functionality, then

write code to pass them
 Code is only written to pass tests
 "Doing the simplest thing that could

possibly work"
 Refactoring is expected
 Writing code only to pass tests might end

up with funky design

Write Tests

Run Tests

Write Code to
Pass Tests

Refactor

[pass] [not pass]

[unit complete]

[u
ni

t i
nc

om
pl

et
e]

 By making the test first, you really understand what you're
trying to implement

 Your testing has better code coverage, testing every segment
of code at least once

 Regression testing happens naturally
 Debugging should be easier since you know where the

problem likely is (the new code added)
 The tests are a form of documentation, showing what the

code should and shouldn't do

 System testing is testing of the whole product
 Both unit testing and integration testing of individual classes and

larger components should have been done by now
 Testing both functional and non-functional requirements

 System testing is necessary because:
 There could still be faults in the components
 Some things can't be fully tested without all the pieces together

 Alpha testing is the first stage of system testing
 Developers test behavior similar to what real users would do

 Beta testing has real users testing the product

 Alpha testing and the two phases of beta testing are similar, but
there are some details that are different, summarized in this table

Alpha Testing
Beta Testing

Acceptance Testing Installation Testing

Personnel Testers Users Users

Environment Controlled Controlled Uncontrolled

Purpose Validation (Indirect) and Verification Validation (Direct) Verification

Recording Extensive Logging Limited Logging Limited Logging

 Functional alpha testing is based on the requirements listed in
the product specification

 To isolate failures, basic functionality is tested before more
complex functionality

 Operational profiles give information about how often
different use cases come up and the typical order of use cases
 Using these profiles, testers can make tests that simulate typical

usage

 Some non-functional requirements are development requirements
 Cost of the product
 Time the product takes to be made

 Development requirements generally can't be tested, but there are many kinds of non-
functional execution requirements that are testable

 Common non-functional execution tests:
 Timing tests time the amount of time needed to perform a function, sometimes using

benchmarks, standard timing tests
 Reliability tests try to determine the probability that a product will fail within a time interval:

mean time to failure
 Availability tests try to determine that probability that a product will be available within a time

interval: percent up time
 Stress tests try to determine robustness (operating under a wide range of conditions) and

safety (minimizing the damage from a failure)
 Configuration tests check the product on different hardware and software platforms

 Some user interface tests straddle the line between functional and
non-functional

 Tests that check the user interface are called usability tests or
human factors tests

 Internationalization or localization tests are a kind of usability
test that check translations and other cultural information like
currencies and the formatting of numbers, times, and dates

 Accessibility tests check whether the user interface works for all
people, even with significant disabilities
 There are guidelines for the kinds of disabilities that need support (low

visual acuity or color blindness)
 Testing often involves measuring the time needed to perform tasks

 Beta testing uses external testers, usually users from the
population who will use your product

 These users have the duty to record and report failures
 Acceptance testing is a kind of beta testing done by clients to

validate that the product meets their needs
 Done in a controlled environment, like the one alpha testing was done in

 Installation testing is a kind of beta testing using real users in
uncontrolled environments
 Instead of validation, the goal is to verify that the product works properly

in a (more) real environment
 Installation testing can be inefficient, since the users often do not give the

most detailed feedback

 Exam 2 on Wednesday!
 Work day on Friday

 Work on Project 3
 Study for Exam 2
 In class on Wednesday!

	COMP 3100
	Last time
	Questions?
	Deployment, Maintenance, and Support
	Deployment, maintenance, and support
	Physical architecture
	Modeling physical architecture
	Deployment
	Distribution channels
	Maintenance
	Cost of maintenance
	Support
	Support communication
	Review
	Exam format
	Software Quality Assurance
	Eight dimensions of software quality
	Quality assurance
	Defect prevention
	Reusing ideas
	Formal methods and prototypes
	Tools
	Defect detection and removal
	Review and correct methods
	Test and debug
	Overview of testing
	Breaking it all down
	User Interaction Design
	Interaction design
	User interaction design goals
	Interaction design models
	Use case diagrams
	Layout diagrams
	Use case descriptions
	SAC principles
	CAP principles
	FeVER principles
	Software Engineering Design
	Preventing design defects
	Simplicity
	Small modules
	Information hiding
	Minimize module coupling
	Maximize module cohesion
	Design process
	Architectural design
	Model-View-Controller
	Layered style
	Repository style
	Client-server architecture
	Pipe and filter style
	Project Scheduling
	Project scheduling
	Example of tasks
	Gantt charts
	Detailed Design
	More depth on class diagrams
	Inheritance and interfaces in class diagrams
	Other associations
	Complex example
	Design Patterns
	Design patterns
	Composite pattern
	Command pattern
	Decorator pattern
	Observer pattern
	Factory method pattern
	Abstract factory pattern
	Singleton pattern
	Strategy pattern
	Adapter pattern
	Construction Techniques
	Bought and customized systems
	Pros and cons of bought and customized systems
	Idioms
	Programming style
	Naming
	Older naming conventions
	Layout conventions
	Commenting
	Good commenting
	Questionable commenting
	Data organization
	Version control
	VCS choices
	Quality Assurance in Construction
	Static analysis and dynamic analysis
	Code reviews
	Syntax and style checking
	Usage checking and idiom checking
	Formal methods
	Unit Testing
	Unit testing
	Developing test cases
	Code coverage
	Example CFG
	Kinds of coverage
	Boundary value analysis
	Other heuristics
	Regression testing
	Unit testing tools
	JUnit
	JUnit classes
	Assertions
	Assertions in JUnit tests
	Assertion example
	Sometimes failing is winning
	Debugging
	Debugging
	Debug code
	Debuggers
	Refactoring
	Common refactoring actions
	Test driven development
	Principles of TDD
	Benefits of TDD
	System Testing
	System testing
	Details of system testing
	Functional alpha testing
	Non-functional alpha testing
	User interface tests
	Beta testing
	Upcoming
	Next time…
	Reminders

